Langsung ke konten utama

Logaritma

Logaritma :
1.  Jika 2log x = 3
     Tentukan nilai x = ….
            Jawab:
            2log x = 3   x = 23
                                     x = 8.
2.  Jika 4log 64 = x
     Tentukan nilai x = ….
            Jawab:
            4log 64 = x   4x = 64
                                        4x = 44
                            x = 4.
3.  Nilai dari 2log 8 + 3log 9 = ….
            Jawab:
            = 2log 8 + 3log 9
            = 2log 23 + 3log 32
            =  3 + 2
            =  5
4.  Nilai dari 2log (8 x 16) = ….
            Jawab:
            = 2log 8 + 2log 16
            = 2log 23 + 2log 24
            =  3 + 4
            =  7
5.  Nilai dari 3log (81 : 27) = ….
            Jawab:
            = 3log 81 - 3log 27
            = 3log 34 - 3log 33
            =  4 - 3
            =  1
6.  Nilai dari 2log 84 = ….
            Jawab:
            = 2log 84
            = 4 x 2log 23
            = 4 x 3
            = 12
7.  Nilai dari 2log 84 = ….
            Jawab:
            = 2log 84  
            = 2 x 2log 23
            = 2 x 3
            = 6
8.      Jika log 100 = x
Tentukan nilai x = ….
                        Jawab:
                        log 100 = x   10x = 100
                                    10x =  102
                                   x = 2.
9.      log 3 = 0,477 dan log 2 = 0,301
Nilai log 18 = ….
log 3 = 0,477 dan log 2 = 0,301
log 18 = log 9 x 2
                        = log 9 + log 2
                        = log 32 + log 2
                        = 2 (0,477) + 0,301
                        = 0,954 + 0,301
                        = 1,255 
10.  log 2 = 0,301 dan log 5 = 0,699
Nilai log 5 + log 8 + log 25 = ….
log 2 = 0,301 dan log 5 = 0,699
= log 5 + log 8 + log 25
            = log 5 + log 23 + log 52
= log 5 + 3.log 2 + 2.log 5
= 0,699 + 3(0,301) + 2(0,699)
= 0,699 + 0,903 + 1,398
= 3,0

11.
      Tentukan nilai dari :
(a). log 1000          dan      (b).2 log 128
Penyelesaian :
(a). Misalkan log 1000 = y
log 1000 = 10  log 1000 = 10log103 = y
103 = 10y         (definisi)
 y = 3
(b). Misalkan 2log 128  = x
          2log 128 = 2log 27 = x
       27 = 2x
       x = 7
12.      Tentukanlah atau hitunglah nilai dari
(a) log 234                         (b). log 23,4                 (c). log 2,34
(d). log 0,234                     (e). log 0,000234
Penyelesaian :
(a). log 234 = log (2,34 x 102) = log 2,34 + log 102 = log 2,34 + 2
Dengan memperhatikan atau membaca logaritma biasa, nilai log 2,34 berada pada baris yang dikepalai oleh 23 dan di bawah kolom yang dikepalai oleh 4. Hal ini berarti log 2,34 = 0,369. Jadi, log 234 = 0,369 + 2 = 2,369.
Catatan :
Bilangan 0,369 disebut mantisa (bagian desimal) dan 2 disebut karakteristik (bagian bulat). Dalam hal ini mantisa logaritma tidak pernah negatif, tetapi 0 mantisa < 1.
(b). log 23,4 = log (2,34 x 101) = log 2,34 + log 10 = log 2,34 + 1 = 0,369 + 1 = 1,369.
(c). log 2,34 = 0,369
(d). log 0,000234 = log (2,34 x 10-4) = log 2,34 + log 10-4 = 0,369 - 4 = -3,631.
13.      Tentukanlah x jika
(a). log x = 4,483               (b). log x = 2,483                     (c). log x = 0,483
(d). log x = - 2,483                         (e). log x = -4,483
Penyelesaian :
(a). log x = 4,483 menurut definisi x = 104,483 = 100,483+4 = 104 x 100,483

Untuk menghitung 100,483 , kita harus menemukan bilangan yang logaritmanya 0,483.

1. Seorang murid diminta mengerjakan 5 dari 7 soal ulangan, tapi soal nomor 1 dan 2 harus dikerjakan. Banyaknya pilihan yang dapat diambil murid tersebut adalah….
  1. 4
  2. 5
  3. 6
  4. 7
  5. 10
Penyelesaian cara cepat :
No. 1 dan 2 harus dikerjakan, maka sisa nomor yang dipilih : 3 ,4 ,5 ,6 ,7
Dipilih 3 soal lagi,maka :
C53 = (5.4) /(2.1) = 10

2. Jumlah dari penyelesaian persamaan :       2log2x +52log x +6 = 0 sama dengan….
  1. ¼
  2. ¾
  3. 1/8
  4. 3/8
  5. -5/8
Jawab:

Pembahasan smart/cara cepat

ingat!
alog f(x) = p maka :
f(x) = ap
maka:
  • 2log2x +52log x +6 = 0
  • (2log x +2)(2log +3) =0
  • 2log x = -2 atau 2log x = -3
  • x = 2-2 = ¼  atau x = 2-3 = 1/8
Maka : x1 + x2 = ¼  + 1/8 = 3/8

Komentar

Postingan populer dari blog ini

Fungsi Naik dan Fungsi Turun

Fungsi Naik dan Fungsi Turun Fungsi f(x) dikatakan naik jika f'(x) > 0 Fungsi f(x) dikatakan turun jika f'(x) < 0 Fungsi f(x) dikatakan stasioner jika f'(x) = 0 Fungsi f(x) dikatakan tidak naik jika f'(x) ≤ 0 Fungsi f(x) dikatakan tidak turun jika f'(x) ≥ 0 Contoh soal 1 : Tentukan nilai x agar fungsi f(x) = x 2  – 8x – 9 naik Jawab : Agar naik maka f'(x) > 0 2x – 8 > 0 x > 4 Contoh soal 2 : Tentukan nilai x agar fungsi f(x) = -2x 2  + 12x – 5 turun Jawab : Agar turun maka f'(x) < 0 -4x + 12 < 0 -4x < -12 x > 3 Contoh soal 3 : Fungsi f(x) = x 3  – 9x 2  + 15x – 17 akan naik pada interval …. Jawab : Syarat fungsi naiuk adalah f'(x) > 0 3x 2  – 18x + 15 > 0 x 2  – 6x + 5 > 0 (x -1)(x – 5) > 0 x < 1 atau x > 5 Contoh soal 4 : Nilai x yang menyebabkan fungsi f(x) = x 4  – 18x 2  turun adalah … Jawab : Agar t...

Mengapa Bilangan yang Dipangkatkan Nol sama dengan 1

Bilangan atau angka yang dipangkatkan dengan 0 akan selalu hasilnya 1, keculi 0 0  yang memang hasilnya 0. Kok bisa seperti itu ya? Ayo kita bahas bersama. Pertama coba diingat dulu dengan sifat dari pembagian bilangan pangkat berikut ini : Bilangan pangkat x n  dibagi x a  maka hasilnya bilangan pokoknya tetap x tetapi bilangan pangkatnya dikurangi dengan pangkat pembaginya. Sehingga nilainya menjadi : X n-a Sekarang kita coba bagi bilangan yang sama dengan pangkat yang sama. Nah, bisa dilihat bahwa x 0  = 1. sumber: http://puteka85.blogspot.com/2012/08/mengapa-bilangan-yang-dipangkatkan-0.html

Fungsi komposisi dan komposisi fungsi

Fungsi komposisi dan komposisi fungsi Soal Nomor 1 Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah: f(x) = 3x + 2 g(x) = 2 − x Tentukan: a) (f o g)(x) b) (g o f)(x) Pembahasan Data: f(x) = 3x + 2 g(x) = 2 − x a) (f o g)(x) "Masukkan g(x) nya ke f(x)"   sehingga: (f o g)(x) = f ( g(x) )   = f (2 − x)   = 3(2 − x) + 2   = 6 − 3x + 2   = − 3x + 8 b) (g o f)(x) "Masukkan f (x) nya ke g (x)"   sehingga: (g o f)(x) = g ( f (x) )   = g ( 3x + 2)   = 2 − ( 3x + 2) = 2 − 3x − 2   = − 3x Soal Nomor 2 Diberikan dua buah fungsi: f(x) = 3x 2   + 4x + 1 g(x) = 6x Tentukan: a) (f o g)(x) b) (f o g)(2) Pembahasan Diketahui: f(x) = 3x 2   + 4x + 1 g(x) = 6x a) (f o g)(x)   = 3(6x) 2   + 4(6x) + 1 =   108x 2   + 24x + 1  = 18x 2   + 24x + 1 b) (f o g)(2) (f o g)(x) = 108x 2   + 24x + 1 (f o g)(2) = 108(2) 2   + 24(2) + ...