Langsung ke konten utama

Postingan

Menampilkan postingan dari Mei, 2016

Permutasi dan Kombinasi

20 Soal Serta Jawaban Permutasi dan Kombinasi (Matematika Diskrit) Soal dan jawaban tentang Permutasi dan Kombinasi PERMUTASI 1)       Ada berapa cara bila 4 orang remaja (w,x, y, z) menempati tempat duduk yang akan disusun dalam suatu susunan yang teratur? Jawaban: 4P4 = 4! = 4 x 3 × 2 × 1 = 24 cara 2)       Menjelang Pergantian kepengurusan BEM STMIK Tasikmalaya akan dibentuk panitia inti sebanyak 2 orang (terdiri dari ketua dan wakil ketua), calon panitia tersebut ada 6 orang yaitu: a, b, c, d, e, dan f. Ada berapa pasang calon yang dapat duduk sebagai panitia inti tersebut? Jawaban: 6P2 = 6!/(6-2)! = (6.5.4.3.2.1)/(4.3.2.1) = 720/24 = 30 cara 3)       Sekelompok mahasiswa yang terdiri dari 10 orang akan mengadakan rapat dan duduk mengelilingi sebuah meja, ada berapa carakah kelima mahasiswa tersebut dapat diatur pada sekeliling meja tersebut? Jawaban: P5 = (10-1)! = 9.8.7.6.5.4.3.2.1...

Fungsi komposisi dan komposisi fungsi

Fungsi komposisi dan komposisi fungsi Soal Nomor 1 Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah: f(x) = 3x + 2 g(x) = 2 − x Tentukan: a) (f o g)(x) b) (g o f)(x) Pembahasan Data: f(x) = 3x + 2 g(x) = 2 − x a) (f o g)(x) "Masukkan g(x) nya ke f(x)"   sehingga: (f o g)(x) = f ( g(x) )   = f (2 − x)   = 3(2 − x) + 2   = 6 − 3x + 2   = − 3x + 8 b) (g o f)(x) "Masukkan f (x) nya ke g (x)"   sehingga: (g o f)(x) = g ( f (x) )   = g ( 3x + 2)   = 2 − ( 3x + 2) = 2 − 3x − 2   = − 3x Soal Nomor 2 Diberikan dua buah fungsi: f(x) = 3x 2   + 4x + 1 g(x) = 6x Tentukan: a) (f o g)(x) b) (f o g)(2) Pembahasan Diketahui: f(x) = 3x 2   + 4x + 1 g(x) = 6x a) (f o g)(x)   = 3(6x) 2   + 4(6x) + 1 =   108x 2   + 24x + 1  = 18x 2   + 24x + 1 b) (f o g)(2) (f o g)(x) = 108x 2   + 24x + 1 (f o g)(2) = 108(2) 2   + 24(2) + ...