Langsung ke konten utama

Bahagia



Kekasihku lihatlah
Tlah kau hapus luka dihatiku
Oh sayangku rasakanlah ini
Anugrah atas nama cinta
Katakan pada dunia kamu dan aku bahagia
Semoga cinta kan terjaga slamanya
Terima kasih tuhan kau beri aku seseorang 
Yang mendampingiku di dalam suka dan duka
Kekasihku dekaplah memberi bahagia

Komentar

Postingan populer dari blog ini

Fungsi Naik dan Fungsi Turun

Fungsi Naik dan Fungsi Turun Fungsi f(x) dikatakan naik jika f'(x) > 0 Fungsi f(x) dikatakan turun jika f'(x) < 0 Fungsi f(x) dikatakan stasioner jika f'(x) = 0 Fungsi f(x) dikatakan tidak naik jika f'(x) ≤ 0 Fungsi f(x) dikatakan tidak turun jika f'(x) ≥ 0 Contoh soal 1 : Tentukan nilai x agar fungsi f(x) = x 2  – 8x – 9 naik Jawab : Agar naik maka f'(x) > 0 2x – 8 > 0 x > 4 Contoh soal 2 : Tentukan nilai x agar fungsi f(x) = -2x 2  + 12x – 5 turun Jawab : Agar turun maka f'(x) < 0 -4x + 12 < 0 -4x < -12 x > 3 Contoh soal 3 : Fungsi f(x) = x 3  – 9x 2  + 15x – 17 akan naik pada interval …. Jawab : Syarat fungsi naiuk adalah f'(x) > 0 3x 2  – 18x + 15 > 0 x 2  – 6x + 5 > 0 (x -1)(x – 5) > 0 x < 1 atau x > 5 Contoh soal 4 : Nilai x yang menyebabkan fungsi f(x) = x 4  – 18x 2  turun adalah … Jawab : Agar t...

Mengapa Bilangan yang Dipangkatkan Nol sama dengan 1

Bilangan atau angka yang dipangkatkan dengan 0 akan selalu hasilnya 1, keculi 0 0  yang memang hasilnya 0. Kok bisa seperti itu ya? Ayo kita bahas bersama. Pertama coba diingat dulu dengan sifat dari pembagian bilangan pangkat berikut ini : Bilangan pangkat x n  dibagi x a  maka hasilnya bilangan pokoknya tetap x tetapi bilangan pangkatnya dikurangi dengan pangkat pembaginya. Sehingga nilainya menjadi : X n-a Sekarang kita coba bagi bilangan yang sama dengan pangkat yang sama. Nah, bisa dilihat bahwa x 0  = 1. sumber: http://puteka85.blogspot.com/2012/08/mengapa-bilangan-yang-dipangkatkan-0.html

Fungsi komposisi dan komposisi fungsi

Fungsi komposisi dan komposisi fungsi Soal Nomor 1 Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah: f(x) = 3x + 2 g(x) = 2 − x Tentukan: a) (f o g)(x) b) (g o f)(x) Pembahasan Data: f(x) = 3x + 2 g(x) = 2 − x a) (f o g)(x) "Masukkan g(x) nya ke f(x)"   sehingga: (f o g)(x) = f ( g(x) )   = f (2 − x)   = 3(2 − x) + 2   = 6 − 3x + 2   = − 3x + 8 b) (g o f)(x) "Masukkan f (x) nya ke g (x)"   sehingga: (g o f)(x) = g ( f (x) )   = g ( 3x + 2)   = 2 − ( 3x + 2) = 2 − 3x − 2   = − 3x Soal Nomor 2 Diberikan dua buah fungsi: f(x) = 3x 2   + 4x + 1 g(x) = 6x Tentukan: a) (f o g)(x) b) (f o g)(2) Pembahasan Diketahui: f(x) = 3x 2   + 4x + 1 g(x) = 6x a) (f o g)(x)   = 3(6x) 2   + 4(6x) + 1 =   108x 2   + 24x + 1  = 18x 2   + 24x + 1 b) (f o g)(2) (f o g)(x) = 108x 2   + 24x + 1 (f o g)(2) = 108(2) 2   + 24(2) + ...