Langsung ke konten utama

keganggu



Keganggu
Nalika arep turu ati rasa keganggu
Pengen pisan ketemu nganti bli bisa turu

Lamun tengahe wengi
Bayangan sang kekasih
Kelingan janji suci
Bareng sabar ngenteni
Bareng sabar ngenteni

Rentege ning ati kaya wis nyumbadani
Bagen gah mati tenimbang bli dadi siji

Kasih pujaan kang gawe rasa bahagia
Awan lan bengi kebayang katon ning mata
Kapan waktune sun klakone
Pada tresnane pada sayange

Aja dawa-dawa lara wis ora sanggup nyangga
Batin selalu disiksa pengen gage laksana
Pengen gage laksana

Komentar

Postingan populer dari blog ini

Fungsi Naik dan Fungsi Turun

Fungsi Naik dan Fungsi Turun Fungsi f(x) dikatakan naik jika f'(x) > 0 Fungsi f(x) dikatakan turun jika f'(x) < 0 Fungsi f(x) dikatakan stasioner jika f'(x) = 0 Fungsi f(x) dikatakan tidak naik jika f'(x) ≤ 0 Fungsi f(x) dikatakan tidak turun jika f'(x) ≥ 0 Contoh soal 1 : Tentukan nilai x agar fungsi f(x) = x 2  – 8x – 9 naik Jawab : Agar naik maka f'(x) > 0 2x – 8 > 0 x > 4 Contoh soal 2 : Tentukan nilai x agar fungsi f(x) = -2x 2  + 12x – 5 turun Jawab : Agar turun maka f'(x) < 0 -4x + 12 < 0 -4x < -12 x > 3 Contoh soal 3 : Fungsi f(x) = x 3  – 9x 2  + 15x – 17 akan naik pada interval …. Jawab : Syarat fungsi naiuk adalah f'(x) > 0 3x 2  – 18x + 15 > 0 x 2  – 6x + 5 > 0 (x -1)(x – 5) > 0 x < 1 atau x > 5 Contoh soal 4 : Nilai x yang menyebabkan fungsi f(x) = x 4  – 18x 2  turun adalah … Jawab : Agar t...

Mengapa Bilangan yang Dipangkatkan Nol sama dengan 1

Bilangan atau angka yang dipangkatkan dengan 0 akan selalu hasilnya 1, keculi 0 0  yang memang hasilnya 0. Kok bisa seperti itu ya? Ayo kita bahas bersama. Pertama coba diingat dulu dengan sifat dari pembagian bilangan pangkat berikut ini : Bilangan pangkat x n  dibagi x a  maka hasilnya bilangan pokoknya tetap x tetapi bilangan pangkatnya dikurangi dengan pangkat pembaginya. Sehingga nilainya menjadi : X n-a Sekarang kita coba bagi bilangan yang sama dengan pangkat yang sama. Nah, bisa dilihat bahwa x 0  = 1. sumber: http://puteka85.blogspot.com/2012/08/mengapa-bilangan-yang-dipangkatkan-0.html

Fungsi komposisi dan komposisi fungsi

Fungsi komposisi dan komposisi fungsi Soal Nomor 1 Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah: f(x) = 3x + 2 g(x) = 2 − x Tentukan: a) (f o g)(x) b) (g o f)(x) Pembahasan Data: f(x) = 3x + 2 g(x) = 2 − x a) (f o g)(x) "Masukkan g(x) nya ke f(x)"   sehingga: (f o g)(x) = f ( g(x) )   = f (2 − x)   = 3(2 − x) + 2   = 6 − 3x + 2   = − 3x + 8 b) (g o f)(x) "Masukkan f (x) nya ke g (x)"   sehingga: (g o f)(x) = g ( f (x) )   = g ( 3x + 2)   = 2 − ( 3x + 2) = 2 − 3x − 2   = − 3x Soal Nomor 2 Diberikan dua buah fungsi: f(x) = 3x 2   + 4x + 1 g(x) = 6x Tentukan: a) (f o g)(x) b) (f o g)(2) Pembahasan Diketahui: f(x) = 3x 2   + 4x + 1 g(x) = 6x a) (f o g)(x)   = 3(6x) 2   + 4(6x) + 1 =   108x 2   + 24x + 1  = 18x 2   + 24x + 1 b) (f o g)(2) (f o g)(x) = 108x 2   + 24x + 1 (f o g)(2) = 108(2) 2   + 24(2) + ...